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We consider a Brownian particle in a “meandering” periodic potential when the ambient temperature is a
periodically or stochastically varying function of time. Though far from equilibrium, the linear response of the
particle to an external static force is exactly the same as in the equilibrium case, i.e., for constant temperature.
Even more surprising is the nonlinear response: the particle slows down and then even starts to move in the
direction opposite to the applied force.
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The second law of thermodynamics requires that the re-
sponse of a system at thermal equilibrium to a static external
force is a motion in the direction of that force. In this Rapid
Communication we address the geometrically constrained
motion of a Brownian particle with the remarkable property
that, though being far from equilibrium, its linear response to
a static forceF is exactly the same as in the equilibrium case.
In particular, the system is at rest in the absence of the ex-
ternal perturbationF and for sufficiently small(positive or
negative) F it moves, as naively expected, in the same direc-
tion as the static force. An even more remarkable, genuine
nonequilibrium behavior arises in the nonlinear response re-
gime: upon increasingF to moderately large(positive or
negative) values, the particle slows down and then even
starts to move in the direction opposite to the applied force
F. Note that such a response behavior is fundamentally dif-
ferent from so-called absolute negative conductance or mo-
bility [1], characterized by linear and nonlinear response
properties that are just reciprocal to those described above,
and from differential negative mobility[2], where the trans-
port speed decreases with increasing force but never points
in the direction opposite to that force. Accordingly, also the
underlying physics and, in particular, the considered systems
are entirely different. Furthermore, our present case has noth-
ing to do with a so-called ratchet effect[3], where, by defi-
nition, the velocity of the Brownian particle is finite even in
the absence of an external force, thus keeping the same sign
in an entire interval of positive and negative forcesF, and
moreover increasing monotonically as a function ofF.

The above announced response of a Brownian particle to
an external force requires the interplay of two indispensable
ingredients: a nonlinear dynamics and a source of disequilib-
rium. Both will be chosen in a way that is conceptually very
simple and experimentally easy to realize. As for the nonlin-
ear dynamics, we consider an overdamped Brownian par-
ticle, whose motion is confined to a quasi-one-dimensional
meandering path in thex-y plane, and which is subjected to
an externally applied homogeneous force along thex axis
(see Fig. 1). Experimentally, such a meandering state space
can be realized, e.g., by means of light forces[4] or morpho-
logically via lithographic etching methods[5], while the ex-
ternal force can be generated, e.g., by electrical or magnetic
fields, or by gravitation. The second main ingredient of our
model is a source of disequilibrium. Since the heydays of
Carnot’s machines, one of the simplest examples in this re-

spect is a temperature that periodically switches between two
different values[see Fig. 2(a)]. Apart from this “minimal”
example we will also admit somewhat more general time-
dependent temperaturesTstd, consisting of a “background”
or “floor” temperatureT0, superimposed by short, but violent
temperature “pulses,” “spikes,” or “outbursts,” occurring at
random timesti and extending over characteristic time inter-
vals ti [see Fig. 2(b)]. In analogy to the periodic case, the
average interspike distance is denoted by

tªkti+1 − til, s1d

and the relative duration of the temperature spikes by

qªktil/t. s2d

Experimentally, such temperature variations may be realized
either directly via heating, e.g., with laser pulses or indi-
rectly, e.g., by pressure pulses. We also note that such out-
bursts may not necessarily be caused by thermal noise, but
may as well be considered as a simplified model for sudden
mechanical “strikes,” “quakes,” “impacts,” “eruptions,” etc.
With a negligibly small “background” temperatureT0, such a

FIG. 1. Examples of quasi-one-dimensional meandering paths in
the x-y plane (e.g., generated by a potential which is zero in the
black, and infinity in the white domains). They are required to be
periodic(with periodLx) along thex axis and confined along they
axis. A further essential feature is the existence of sharp bends, such
that a steady motion along the meandering path results in a back-
and-forth motion when projected along thex axis. In general, no
further symmetry is required, as exemplified with(a). The piece-
wise linear example(b) of high symmetry serves to simplify the
discussion of the basic physical mechanisms. A homogeneous, static
bias forceF is applied along thex direction.
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model may then describe a variety of experiments with even
quite large “particles” subject to some kind of sporadic vio-
lent shaking.

The quantity of central interest is the average particle cur-
rent along thex axis

kẋlªlim
t→`

xstd
t

. s3d

For ergodicity reasons, no ensemble average on the right-
hand side is needed and due to the long time limit, initial
conditions do not matter. For the symmetric example in Fig.
1(b) it is clear that the currentkẋl is an odd function of the
applied forceF and in particular vanishes in the absence of
the force. For more general cases like in Fig. 1(a), the former
property is lost but, as we will show later, one still haskẋl
=0 for F=0. In other words, our system doesnot exhibit a
ratchet effect.

Parametrizing byq the position of the particle along its
meandering route(path length), its overdamped Brownian
motion can be modeled by the Langevin equation[3,6]

hq̇std = − V8sqstdd + Î2hkBTstdjstd, s4d

whereh denotes the damping coefficient,kB the Boltzmann’s
constant, andjstd a d-correlated, unbiased Gaussian noise.
The force −V8sqd in (4) represents the projection ofeWxF in
Fig. 1 along the meandering path at the position param-
etrized byq. Thus,Vsqd is proportional toF. Denoting byLq

the natural spatial period along the meandering path one can
see from Fig. 1 that increasing the path lengthq by one
periodLq is tantamount to increasing thex component of the
particle position by one periodLx and leaving they compo-
nent unchanged. As a first consequence, we can infer that
Vsq+Lqd=Vsqd−FLx and hence,

Vsqd = FfGsqd − qLx/Lqg, s5d

Gsq + Lqd = Gsqd. s6d

As a second consequence, it follows that the average velocity
of actual interest(3) is related to the average velocity

kq̇l : = limt→`hqstd / tj of the auxiliary dynamics(4) according
to

kẋl = kq̇lLx/Lq. s7d

Note that the periodic functionGsqd from (5) and(6) is F
independent. In Fig. 3, we exemplify its explicit construction
for the piecewise linear meandering path from Fig. 1(b).
Whence one can infer that

Gsqd = H− qs1 − Lx/Lqd for − l2 , q ø 0

qscosw + Lx/Lqd for 0 , q ø l1
J , s8d

Gsq + l1 + l2d = Gsqd, s9d

Lx = 2sl2 − l1 coswd, s10d

Lq = 2sl1 + l2d. s11d

In order to study the linear response behavior of our sys-
tem, the deterministic force −V8sqd in (4), beingLq periodic
according to(5) and (6), is expanded into a Fourier series.
Since each summand of this Fourier expansion is propor-
tional to F [cf. Eq. (5)] it follows that in leading orderF
(linear response) the effect in(4) of each of those summands
can be considered separately and their individual contribu-
tions to the currentkq̇l can simply be added up. For symme-
try reasons one can infer[3] that any summand which exhib-
its harmonic oscillations as a function ofq does not lead to a
systematic directed transport, i.e., does not contribute tokq̇l.
It remains the nonoscillating part of −V8sqd, which according
to (5) is given byFLx/Lq, and hence gives rise to a current
hkq̇l=FLx/Lq after averaging out the noise in(4). Exploiting
(7) we thus can infer that

FIG. 2. Examples of time-dependent temperaturesTstd. (a) Tstd
is periodically switching betweenThigh andT0. The total period ist
and the duration of the high- and low-temperature segmentsqt and
s1−qdt, respectively, withqP s0,1d. (b) Tstd consist of a “back-
ground” T0 and random “spikes” at timesti of duration ti. Their
average distance and duration are characterized according to Eqs.
(1) and (2).

FIG. 3. (a) Same example as in Fig. 1(b), parametrized by the
angle w and the lengthsl1, l2. (b) The corresponding one-
dimensional potentialVsqd as described above in Eq.(5), i.e.,
V8sqd=−F for qP f−l2,0g or qP fl1, l1+ l2g andV8sqd=F cosw for
qP f−l1− l2,−l2g or qP f0,l1g. The encircled numbers mark corre-
sponding positions in(a) and (b).
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kẋl = SLx

Lq
D2F

h
+ OsF2d. s12d

The same result can also be derived in a mathematically
more rigorous way by means of a perturbation expansion in
F of the Fokker-Planck equation equivalent to(4). Moreover,
it can be extended beyond the so far considered case that
Tstd.0 for all t. The most remarkable property of the linear
response behavior(12) is its independence of the temperature
Tstd: For strong temperature variations, i.e.,far from equilib-
rium, it is exactly the same as in the equilibrium casewhen
the temperature is constant.

Next, we turn to the nonlinear response for not too small
forcesF. The simplest case arises whenF is so large, or the
“background temperature”T0 is so small, that in the auxiliary
dynamics(4)–(6) the effect of the fluctuationsjstd is negli-
gible between successive temperature spikes(cf. Fig. 2). Fur-
thermore, any temperature outburst is assumed to be so vio-
lent, that the distribution of an ensemble of Brownian
particles will be completely randomized, i.e., practically uni-
formly distributed within any interval comparable to the spa-
tial period Lq. Moreover, during such an outburst, the par-
ticles will practically not feel the details of the periodic part
Gsqd of the potential in(5) but only its systematic “tilt”
−qFLx/Lq. Hence, the average displacement during an out-
burst of durationti is

Dqsstid = tiFLx/sLqhd. s13d

Between two outbursts, the particles start with a uniform
initial probability distribution and then evolve deterministi-
cally according to(4) with jstd;0. Focusing on the piece-
wise linear example from Fig. 3(b) and Eqs.(8)–(11), and on
positive forcesF, one readily finds that the average net dis-
placement during the timeDti : = ti+1− ti −ti between two tem-
perature outbursts amounts to

Dq0sDtid = fl2
2 − sl2 − v2Dtid2Qsl2 − v2Dtidg/Lq

− fl1
2 − sl1 − v1Dtid2Qsl1 − v1Dtidg/Lq, s14d

wherev2: = uFu /h andv1: = uFucosw /h are the two determin-
istic particle speeds associated with the two different slopes
of the piecewise linear potentialVsqd in Fig. 3(b), and the
Heaviside step functionsQ account for the fact that the par-
ticles stop moving once they have reached a local potential
minimum ofVsqd. The average displacement per temperature
outburst then follows askDqsstid+Dq0sDtidl. Dividing by the
average interspike distance from(1) yields kq̇l. With (2), (7),
and(13) and taking into account thatkẋl is obviously an odd
function of F, we finally obtain

kẋl = F
Lx

Lq
Fq

h

Lx

Lq
+

kDq0sti+1 − ti − tidl
uFut G . s15d

For random temperature bursts, the averagekDq0sti+1− ti
−tidl has to be evaluated according to their specific statistical
properties. In many cases, one expects that the result will be
well approximated byDq0skti+1− ti −tild=Dq0sf1−qgtd, i.e.,

kẋl = F
Lx

Lq
Fq

h

Lx

Lq
+

Dq0sf1 − qgtd
uFut G . s16d

For periodic bursts, Eqs.(15) and (16) are even strictly
equivalent.

For small F, one readily recovers the correct linear re-
sponse behavior(12) from (15), though this small-F regime
was originally not included in our considerations above.
Next, we turn to the case thatuFu is sufficiently large that the
Q functions in (15) vanish. Focusing on the casel1. l2 in
Fig. 3, this amounts to the conditions1−qdtuFucosw /h. l1,
and (15) with (11) and (14) then takes the form

kẋl = F
Lx

Lq
Fq

h

Lx

Lq
−

l1 − l2
2uFut G . s17d

For sufficiently short relative pulse durationsq we thus ex-
pect the existence of an interval ofmoderately largeuFu val-
ues with the property that the currentkẋl will be positive for
negative F and vice versa.

In Figs. 4 and 5, results of numerical simulations are pre-

FIG. 4. Average particle current[Eq. (3)] vs static forceF for
the meandering path in Fig. 3(a) with l1=3, l2=2, w=75°, and a
time-periodic temperature according to Fig. 2(a) with t=10, and
q=0.1. Filled circles:T0=0.001,Thigh=50. Open circles:T0=0.01,
Thigh=5. Shown are results from numerical simulations of Eqs.
(4)–(11) in dimensionless units withh=kB=1. The numerical un-
certainty is about the symbol size. Solid line: The theoretical ap-
proximation(15), coinciding with(16), sinceTstd is periodic. Dot-
ted line: guide for the eye.

FIG. 5. Filled circles: Same as in Fig. 4, with the exception that
the spiking timesti are not periodic[as in Fig. 2(a)] but rather
randomly sampled[as in Fig. 2(b)] according to a Poisson process
with average interspike distancet=10 [cf. (1)]. The relative dura-
tion ti =0.07=q is the same for all spikesi [cf. (2)]. Solid line:
Theoretical approximation(15). Dashed line: Simplified approxi-
mation (16).
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sented, exhibiting a fairly good agreement with the approxi-
mation(15). In particular, both the predicted linear response
and the paradoxical nonlinear response behavior are con-
firmed. While for the filled circles the assumptions made in
the derivation of the approximation(15) are apparently quite
well satisfied, for the open circles there are notable devia-
tions. As mentioned above, for the periodicTstd in Fig. 4 the
approximations(15) and (16) coincide, whereas for the sto-
chasticTstd in Fig. 5 the more complicated expression(15) is
clearly superior.

Finally, we turn to a heuristic discussion of the general
conditions under which the above paradoxical nonlinear re-
sponse behavior is expected. Taking into account the obvious
constraints 0,w,p /2, l2/2−l1 cosw.0 in Fig. 3, and
l1. l2, s1−qdtuFucosw /h. l1 [see above Eq.(17)], one can
infer that a necessary condition to get a current opposite toF
in (17) is q,1/3. On the other hand, the shorter the relative
duration q of the temperature bursts in(17) are, the more
pronounced the effect will be. In particular, forq→0 (i.e., d
spikes in Fig. 2) the currentkẋl in (17) remains opposite toF
for arbitrarily largeuFu. So far, we have assumed that each
temperature burst results in an almost uniform particle ran-
domization within any periodLq. In the opposite case, i.e.,
for not so violent bursts, the distribution will remain notably
peaked around the local potential minima ofVsqd, leading to
a reduced displacement opposite toF during the subsequent
relaxation period until the next burst. In other words, the
effect of interest diminishes with decreasing intensity of the
temperature bursts, and obviously disappears altogether
when the temperature variations in Fig. 2 become negligible.
Similarly, one sees that our assumption of a negligibly small

“background” temperatureT0, i.e., a deterministic relaxation
dynamics in between successive bursts, is optimal in the
sense that with increasing the noise intensityT0, the effect of
interest decreases and finally disappears. These predictions
are confirmed by the open circles in Fig. 4, whose deviations
from the theoretical solid line can be traced back to the in-
creasedT0 value for smallF and to the reducedThigh value
for large F. Finally, going over from the piecewise linear
example in Fig. 1(b) to the more general case in Fig. 1(a),
leads to an increased deterministic relaxation time towards
the local potential minima of the associated auxiliary poten-
tials Vsqd and hence, again, to a reduction of the effect of
interest. Notwithstanding, it is clear that a current opposite to
an applied force of suitable magnitude will arise whenever
the outbursts are sufficiently short and violent,T0 is suffi-
ciently small, and the meandering path is such that a motion
along this path with constant velocity will result in a back-
and-forth motion when projected along thex axis, whose
“backward segments” are of longer duration than the “for-
ward segments”. Similarly, when going over from the quasi-
one-dimensional paths in Fig. 1(zero “width”) to the corre-
sponding meandering structures with a finite “width,” we
numerically verified(not shown) that the basic qualitative
response behavior in Fig. 4 remains unchanged upon extend-
ing the width of the black lines in Fig. 3(a), at least as long
as the corners of the structure indicated by the encircled
numbers 1 and 4 in Fig. 3(a) did not yet merge(correspond-
ing to a maximal width of about 0.182l2).
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