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Paradoxical nonlinear response of a Brownian patrticle
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We consider a Brownian particle in a “meandering” periodic potential when the ambient temperature is a
periodically or stochastically varying function of time. Though far from equilibrium, the linear response of the
particle to an external static force is exactly the same as in the equilibrium case, i.e., for constant temperature.
Even more surprising is the nonlinear response: the particle slows down and then even starts to move in the
direction opposite to the applied force.
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The second law of thermodynamics requires that the respect is a temperature that periodically switches between two
sponse of a system at thermal equilibrium to a static externalifferent values[see Fig. 2a)]. Apart from this “minimal”
force is a motion in the direction of that force. In this Rapid example we will also admit somewhat more general time-
Communication we address the geometrically constrainedependent temperatur@st), consisting of a “background”
motion of a Brownian particle with the remarkable property or “floor” temperatureT,, superimposed by short, but violent
that, though being far from equilibrium, its linear response toemperature “pulses,” “spikes,” or “outbursts,” occurring at
a static forceF is exactly the same as in the equilibrium case.random timeg; and extending over characteristic time inter-
In particular, the system is at rest in the absence of the ex;,q 7 [see Fig. B)]. In analogy to the periodic case, the

ternal_ pertu_rbatlorF and fqr sufficiently smal(posmve or average interspike distance is denoted by
negative F it moves, as naively expected, in the same direc-

tion as the static force. An even more remarkable, genuine ri=(ti1 — ), (1)
nonequilibrium behavior arises in the nonlinear response re- . . ]
negative values, the particle slows down and then even Se=(r)lr ?)
starts to move in the direction opposite to the applied force e
F. Note that such a response behavior is fundamentally difExperimentally, such temperature variations may be realized
ferent from so-called absolute negative conductance or maejther directly via heating, e.g., with laser pulses or indi-
bility [1], characterized by linear and nonlinear responsgectly, e.g., by pressure pulses. We also note that such out-
properties that are just reciprocal to those described abovgyrsts may not necessarily be caused by thermal noise, but
and from differential negative mobilitj2], where the trans- 5y as well be considered as a simplified model for sudden
port speed decreases with increasing force but never poini§echanical “strikes,” “quakes,” “impacts,” “eruptions,” etc.

in the direction opposite to that force. Accordingly, also theyysi, 4 negligibly small “background” temperatufg, such a
underlying physics and, in particular, the considered systems

are entirely different. Furthermore, our present case has noth-

ing to do with a so-called ratchet effef&], where, by defi-
nition, the velocity of the Brownian particle is finite even in (a)
the absence of an external force, thus keeping the same sign

in an entire interval of positive and negative fordgsand

moreover increasing monotonically as a functionFof
The above announced response of a Brownian particle to (b)
an external force requires the interplay of two indispensable y
ingredients: a nonlinear dynamics and a source of disequilib-
T ng Lz

rium. Both will be chosen in a way that is conceptually very
simple and experimentally easy to realize. As for the nonlin-

gar dynamics, We C.OnSIder an overdamp.ed Bro'wnlan. Par £ 1. Examples of quasi-one-dimensional meandering paths in
ticle, thse motI(_)n is confined to a quaSI-pne-dl_mensmna!he x-y plane(e.g., generated by a potential which is zero in the
meandering path In the-y plane, and which is SUbJeCte_d to black, and infinity in the white domainsThey are required to be

an externally applied homogeneous force alongxthexis  periodic(with periodL,) along thex axis and confined along the
(see Fig. 1. Experimentally, such a meandering state spacgyis. A further essential feature is the existence of sharp bends, such
can be realized, e.g., by means of light forpélsor morpho-  that a steady motion along the meandering path results in a back-
logically via lithographic etching methodS], while the ex-  and-forth motion when projected along tieaxis. In general, no
ternal force can be generated, e.g., by electrical or magneti@rther symmetry is required, as exemplified with. The piece-
fields, or by gravitation. The second main ingredient of ourwise linear exampléb) of high symmetry serves to simplify the
model is a source of disequilibrium. Since the heydays ofliscussion of the basic physical mechanisms. A homogeneous, static
Carnot’'s machines, one of the simplest examples in this rebias forceF is applied along the direction.
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FIG. 2. Examples of time-dependent temperatdrgs (a) T(t)
is periodically switching betweeT,g, and To. The total period is- —h-l —l2 ‘@ h \ q
and the duration of the high- and low-temperature segm&ntsnd ®
(1-9) 7, respectively, withd € (0,1). (b) T(t) consist of a “back-

ground” T, and random “spikes” at timet of duration 7. Their FIG. 3. () Same example as in Fig(t), parametrized by the
average distance and duration are characterized according to EG¥19/€ ¢ and the lengthsly, I, (b) The corresponding one-
(1) and(2). dimensional potentiaM(q) as described above in E@5), i.e.,

V'(q)=-F for ge[-1,,0] or ge[lq,l1+]5] andV’'(q)=F cose¢ for

i . . i ge[-l;-1,,-15,] or ge[0,l;]. The encircled numbers mark corre-
model may then describe a variety of experiments with Vel onding positions iiia) and (b).

quite large “particles” subject to some kind of sporadic vio-
lent shaking. - =i /1t of th iliary d icea di
The quantity of central interest is the average particle cur—<q>' =lim,_..{q(t)/t} of the auxiliary dynamic¢4) according
rent along thex axis to
. . X(t . .
Gor=tim ™. @3 (0= (L. @)
t—oo
o . Note that the periodic functio®(q) from (5) and(6) is F
For ergodicity reasons, no ensemble average on the righindependent. In Fig. 3, we exemplify its explicit construction

conditions do not matter. For the symmetric example in Figayhence one can infer that

1(b) it is clear that the currenix) is an odd function of the

applied forceF and in particular vanishes in the absence of . {_ aL-Ldly for -1, <q=0

gcose+L,/Ly) for0 <qg=<lI;

the force. For more general cases like in Fi@)1the former
property is lost but, as we will show later, one still has
=0 for F=0. In other words, our system doast exhibit a
ratchet effect.

Parametrizing byg the position of the particle along its G+l +1)=G(a), 9)
meandering routépath length, its overdamped Brownian
motion can be modeled by the Langevin equalfid]

)

| Ly=2(I,—1, cose), (10
79(t) == V' (q(t) + V27K T(D (L), 4)

where# denotes the damping coefficiet, the Boltzmann’'s Lo=2(1,+1,) (11)

constant, and(t) a 5-correlated, unbiased Gaussian noise. 4 ek

The force V'(q) in (4) represents the projection &F in In order to study the linear response behavior of our sys-

Fig. 1 along the meandering path at the position paramtem, the deterministic forceV*(q) in (4), beinglL, periodic
etrized byq. Thus,V(q) is proportional toF. Denoting byl according to(5) and (6), is expanded into a Fourier series.
the natural spatial period along the meandering path one capince each summand of this Fourier expansion is propor-
see from Fig. 1 that increasing the path lengttby one tional to F [cf. Eq. (5)] it follows that in leading ordeF
periodL, is tantamount to increasing tixecomponent of the  (linear responsethe effect in(4) of each of those summands
particle position by one periob, and leaving they compo- ~ can be considered separately and their individual contribu-
nent unchanged. As a first consequence, we can infer th&©ns to the currenq) can simply be added up. For symme-

V(g+Lg)=V(g)-FL, and hence, try reasons one can infg8] that any summand which exhib-
: its harmonic oscillations as a function g@fdoes not lead to a
V(g) = F[G(a) - qL/Lg], (5 systematic directed transport, i.e., does not contributéto

_ It remains the nonoscillating part of(q), which according
G(g+Ly) =G(q). ® (5) is given byFL,/L,, and hence gives rise to a current

As a second consequence, it follows that the average velocity{a) =FL,/L, after averaging out the noise (#). Exploiting

of actual interest(3) is related to the average velocity (7) we thus can infer that
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The same result can also be derived in a mathematically :s: 0

more rigorous way by means of a perturbation expansion in

F of the Fokker-Planck equation equivaleni{4). Moreover, .

it can be extended beyond the so far considered case that -0.005

T(t)>0 for all t. The most remarkable property of the linear

response behavi@l?) is its independence of the temperature

T(t): For strong temperature variations, ifr, from equilib-

rium, it is exactly the same as in the equilibrium cageen FIG. 4. Average particle currefiEg. (3)] vs static forceF for

the temperature is constant. the meandering path in Fig(& with 1,=3, 1,=2, ¢=75°, and a
Next, we turn to the nonlinear response for not too smalfime-periodic temperature according to FigaRwith =10, and

forcesF. The simplest case arises whEris so large, or the 9=0.1. Filled circlesTo=0.001, Thjgn=50. Open circlesT,=0.01,

“background temperaturel, is so small, that in the auxiliary Thigh=5. Shown are results from numerical simulations of Egs.

dynamics(4)—(6) the effect of the fluctuations(t) is negli- ~ (¥—(1D in dimensionless units wity=ks=1. The numerical un-

gible between successive temperature spiged-ig. 2). Fur- certainty 1s about the .Symbo! Size. S(.)I'd “ne'.The t.heQret'Cal ap-

thermore, any temperature outburst is assumed to be so vi&fgxl!mét'onfjli’ CO;]nC'd'ng with(16), sinceT(t) is periodic. Dot-

lent, that the distribution of an ensemble of Brownian ed fine: guide for the eye.

particles will be completely randomized, i.e., practically uni-

formly distributed within any interval comparable to the spa- 30 = FB ILy, Ago([1-9]7) (16

tial period L, Moreover, during such an outburst, the par- Lql 7Lqg |F|7 '

ticles will practically not feel the details of the periodic part o _

G(g) of the potential in(5) but only its systematic “tilt” FOr periodic bursts, Eqs(15) and (16) are even strictly

-gFL,/L, Hence, the average displacement during an out€auivalent. , ,
burst of durationr, is For smallF, one readily recovers the correct linear re-

sponse behaviorl2) from (15), though this smalF regime
Aqy(7) = TFL/(Lgm). (13)  was originally not included in our considerations above.
Next, we turn to the case thi| is sufficiently large that the
Between two outbursts, the particles start with a uniform® functions in(15) vanish. Focusing on the casg>1, in
initial probability distribution and then evolve deterministi- Fig. 3, this amounts to the conditidfi—9)7{F|cose/ 7> 1;,
cally according ta(4) with &t)=0. Focusing on the piece- and(15) with (11) and(14) then takes the form

wise linear example from Fig.(B) and Eqs(8)—<11), and on
positive forces, one readily finds that the average net dis- (x) = FB{EB - Q} (17)
placement during the timét;: =t,;—t,— r; between two tem- Lol 7Lgq 2|F|7

erature outbursts amounts to - : .
P For sufficiently short relative pulse duratiofswe thus ex-

AGAL) =112 = (1 = 0-AE20 (1 = 0o AL VL pect the existence of an interval wfoderately Iargd_F.| val-
Go(At) =[12~ (12~ v2A6)°0(1 ~ VAL L ues with the property that the currett) will be positive for
-[15= (1= v1A)°0 (I, —v1At) Ly, (14)  negative F and vice versa

. In Figs. 4 and 5, results of numerical simulations are pre-
wherev,: =|F|/ 7 andv;: =|F|cos¢/ 5 are the two determin-
istic particle speeds associated with the two different slopes

of the piecewise linear potential(g) in Fig. 3b), and the 000t
Heaviside step function® account for the fact that the par- 0.002 b _
ticles stop moving once they have reached a local potential %
minimum ofV(q). The average displacement per temperature ;s\ 0
outburst then follows a&Aqgq(7) + Agy(At;)). Dividing by the
average interspike distance frai) yields{(q). With (2), (7), -0.002 1
and(13) and taking into account thgk) is obviously an odd ’

. ; . -0.004
function of F, we finally obtain

(X) = |:5 Ly + (AGo(tiva =t = 7)) ) (15) FIG. 5. Filled circles: Same as in Fig. 4, with the exception that
Lql 7Lq |F|T the spiking timest; are not periodic[as in Fig. 2a)] but rather

randomly sampledlas in Fig. 2b)] according to a Poisson process
For random temperature bursts, the averdgeo(tii=t  ith average interspike distance10 [cf. (1)]. The relative dura-
- 7)) has to be evaluated according to their specific statisticafon »=0.07=9 is the same for all spikes [cf. (2)]. Solid line:
properties. In many cases, one expects that the result will beheoretical approximatioril5). Dashed line: Simplified approxi-
well approximated byAqy({tis1—t— 7)) =Aqe([1-9]7), i.e., mation (16).
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sented, exhibiting a fairly good agreement with the approxi-‘background” temperatur&, i.e., a deterministic relaxation
mation(15). In particular, both the predicted linear responsedynamics in between successive bursts, is optimal in the
and the paradoxical nonlinear response behavior are comsense that with increasing the noise inten3gythe effect of
firmed. While for the filled circles the assumptions made ininterest decreases and finally disappears. These predictions
the derivation of the approximatiaii5) are apparently quite are confirmed by the open circles in Fig. 4, whose deviations
well satisfied, for the open circles there are notable deviafrom the theoretical solid line can be traced back to the in-
tions. As mentioned above, for the periodig) in Fig. 4 the ~ creasedT, value for smallF and to the reducedy, value
approximationg15) and (16) coincide, whereas for the sto- for large F. Finally, going over from the piecewise linear
chasticT(t) in Fig. 5 the more complicated expressid®) is ~ €xample in Fig. {b) to the more general case in Figal,
clearly superior. leads to an increased deterministic relaxation time towards

Finally, we turn to a heuristic discussion of the generalthe local potential minima of the associated auxiliary poten-

conditions under which the above paradoxical nonlinear re.gIaIS V(g) and hence, again, to a reduction of the effect of

sponse behavior is expected. Taking into account the 0bViO‘Ja%:e;esﬁ}gf?g&?ﬁf&?&ggSn?;eanrigggé iv?l?r;iggov%ﬁgilé?/é?
constraints &< ¢<mw/2, I,/2-1,cose>0 in Fig. 3, and PP 9

a the outbursts are sufficiently short and violemg, is suffi-
: ;;:;Zt’h(alt a?;Lljgngg;/Zo?(ljliti[gr??oaggtv: (Ej?rle?)n%'o%r;%gigto ciently small, and the meandering path is such that a motion
: . .~ along thi h with constant velocity will result in k-
in (17) is 9<1/3. On the other hand, the shorter the relatlvea0 g this path with constant velocity esult in a bac

duration © of the t ¢ bursts i h and-forth motion when projected along theaxis, whose
uration v of the temperature bursts ) are, € MOre  wpackward segments” are of longer duration than the “for-
pronounced the effect will be. In particular, f6r—0 (i.e., §

spikes in Fig. 2 the current) in (17) remains opposite {5 ward segments”. Similarly, when going over from the quasi-

o one-dimensional paths in Fig.(zero “width”) to the corre-
for arbitrarily large|F|. So far, we have assumed that eaChsponding meandering structures with a finite “width,” we

temperature burst results in an almost uniform particle ranp,merically verified(not shown that the basic qualitative
domization within any period.. In the opposite case, i.., response behavior in Fig. 4 remains unchanged upon extend-
for not so violent bursts, the distribution will remain notably ing the width of the black lines in Fig.(8), at least as long
peaked around the local potential minima\df)), leading o 45" the comers of the structure indicated by the encircled

a reduced displacement oppositeRtaluring the subsequent ympers 1 and 4 in Fig.(8) did not yet mergeécorrespond-
relaxation period until the next burst. In other words, thejng {0 a maximal width of about 0.183.

effect of interest diminishes with decreasing intensity of the

temperature bursts, and obviously disappears altogether This work was supported by Deutsche Forschungsge-
when the temperature variations in Fig. 2 become negligiblemeinschaft under SFB 613 and RE 1344/3-1, and by the ESF
Similarly, one sees that our assumption of a negligibly smalProgram STOCHDYN.
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